June 19, 2024

Serene Nest

taking care of your health, Our Mission

Preferences for and intention to use an app for premenstrual mental health symptoms using the Health Behaviour Model (HBM)

8 min read
  • Rapkin, A. J. & Winer, S. A. Premenstrual syndrome and premenstrual dysphoric disorder: quality of life and burden of illness. Expert Rev. Pharmacoecon. Outcomes Res. 9, 157–170 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Dennerstein, L., Lehert, P. & Heinemann, K. Epidemiology of premenstrual symptoms and disorders. Menopause Int. 18, 48–51 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Direkvand-Moghadam, A., Sayehmiri, K., Delpisheh, A. & Kaikhavandi, S. Epidemiology of Premenstrual Syndrome (PMS)-A Systematic Review and Meta-Analysis Study. J. Clin. Diagn. Res. 8, 106–109 (2014).

    PubMed Central 

    Google Scholar 

  • Halbreich, U., Borenstein, J., Pearlstein, T. & Kahn, L. S. The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology 28, 1–23 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Prasad, D., Wollenhaupt-Aguiar, B., Kidd, K. N., De Azevedo Cardoso, T. & Frey, B. N. Suicidal Risk in Women with Premenstrual Syndrome and Premenstrual Dysphoric Disorder: A Systematic Review and Meta-Analysis. J. Womens Health 30, 1693–1707 (2021).

    Article 

    Google Scholar 

  • Department of Health & Social Care. Women’s Health Strategy for England. (2022). Accessed 05 October 2023.

  • Funnell, E., Martin-Key, N. A., Spadaro, B. & Bahn, S. Help-seeking behaviours and experiences for mental health symptoms related to the menstrual cycle: a UK-wide exploratory survey. (Under review). NPJ Womens Health (2021).

    Article 

    Google Scholar 

  • Winslow, A., Hooberman, L. & Rubin, L. Werewolves and Two-Headed Monsters: An Exploration of Coping, Sharing, and Processing of Premenstrual Distress Among Individuals With PMDD on an Anonymous Internet Message Board. Womens Reprod. Health 10, 420–435 (2023).

    Article 

    Google Scholar 

  • Hiley, C. UK mobile phone statistics, 2023. (2023). Accessed 05 October 2023.

  • Chandrashekar, P. Do mental health mobile apps work: evidence and recommendations for designing high-efficacy mental health mobile apps. Mhealth 4, 6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schueller, S. M. & Torous, J. Scaling evidence-based treatments through digital mental health. Am Psychol 75, 1093–1104 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, A. H. Y. & Honey, M. L. L. User perceptions of mobile digital apps for mental health: Acceptability and usability – An integrative review. J. Psychiatric Mental Health Nurs. 29, 147–168 (2022).

    Article 

    Google Scholar 

  • Hantsoo, L. et al. Premenstrual symptoms across the lifespan in an international sample: data from a mobile application. Arch. Womens Ment. Health 25, 903–910 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • International Association for Premenstrual Disorders. Tracking Your Cycle & Symptoms. (2023). Accessed 05 January 2023.

  • Ford, A., Togni, G., de & Miller, L. Hormonal Health: Period Tracking Apps, Wellness, and Self-Management in the Era of Surveillance Capitalism. Engaging Sci. Technol. Soc. 7, 48–66 (2021).

    Article 

    Google Scholar 

  • Riley, S. & Paskova, K. A post-phenomenological analysis of using menstruation tracking apps for the management of premenstrual syndrome. Digital Health 8, 20552076221144199 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, M. & Kanaoka, H. Effectiveness of mobile application for menstrual management of working women in Japan: randomized controlled trial and medical economic evaluation. J. Med. Econ. 21, 1131–1138 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Borji-Navan, S., Mohammad-Alizadeh-Charandabi, S., Esmaeilpour, K., Mirghafourvand, M. & Ahmadian-Khooinarood, A. Internet-based cognitive-behavioral therapy for premenstrual syndrome: a randomized controlled trial. BMC Womens Health 22, 5 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weise, C. et al. Internet-Based Cognitive-Behavioural Intervention for Women with Premenstrual Dysphoric Disorder: A Randomized Controlled Trial. Psychotherapy Psychosomatics 88, 16–29 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gan D. Z. Q., McGillivray L., Han J., Christensen H., Torok M. Effect of Engagement With Digital Interventions on Mental Health Outcomes: A Systematic Review and Meta-Analysis. Front. Digital Health. 2021;3. https://doi.org/10.3389/fdgth.2021.764079.

  • Spadaro, B., Martin-Key, N. A. & Bahn, S. Building the Digital Mental Health Ecosystem: Opportunities and Challenges for Mobile Health Innovators. J. Med. Internet Res. 23, e27507 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenstock, I. M. The Health Belief Model and Preventive Health Behavior. Health Educ. Monogr. 2, 354–386 (1974).

    Article 

    Google Scholar 

  • Cho, Y. M., Lee, S., Islam, S. M. S. & Kim, S. Y. Theories Applied to m-Health Interventions for Behavior Change in Low- and Middle-Income Countries: A Systematic Review. Telemed. e-Health 24, 727–741 (2018).

    Article 

    Google Scholar 

  • Walrave, M., Waeterloos, C. & Ponnet, K. Adoption of a Contact Tracing App for Containing COVID-19: A Health Belief Model Approach. JMIR Public Health Surveill. 6, e20572 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. & Vaghefi, I. Continued Use of Contact-Tracing Apps in the United States and the United Kingdom: Insights From a Comparative Study Through the Lens of the Health Belief Model. JMIR Formative Res. 6, e40302 (2022).

    Article 

    Google Scholar 

  • O’Connor, P. J., Martin, B., Weeks, C. S. & Ong, L. Factors that influence young people’s mental health help-seeking behaviour: a study based on the Health Belief Model. J. Adv. Nurs. 70, 2577–2587 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ghorbani-Dehbalaei, M., Loripoor, M., Nasirzadeh, M. The role of health beliefs and health literacy in women’s health promoting behaviours based on the health belief model: a descriptive study. BMC Women Health. 21, (2021).

  • Schueller, S. M., Neary, M., Lai, J. & Epstein, D. A. Understanding People’s Use of and Perspectives on Mood-Tracking Apps: Interview Study. JMIR Mental Health 8, e29368 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Institute for Health and Care Excellence. Premenstrual syndrome: How should I diagnose premenstrual syndrome? (2019). Accessed 05 October 2023.

  • Kancheva Landolt, N. & Ivanov, K. Short report: cognitive behavioral therapy – a primary mode for premenstrual syndrome management: systematic literature review. Psychol. Health Med. 26, 1282–1293 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Borghouts, J. et al. Barriers to and Facilitators of User Engagement With Digital Mental Health Interventions: Systematic Review. J. Med. Internet Res. 23, e24387 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krebs, P. & Duncan, D. T. Health App Use Among US Mobile Phone Owners: A National Survey. JMIR mHealth uHealth 3, e4924 (2015).

    Article 

    Google Scholar 

  • Office for National Statistics. Average household income, UK: financial year ending 2022. (2023). Accessed 05 October 2023.

  • Oyebode, O., Alqahtani, F. & Orji, R. Using Machine Learning and Thematic Analysis Methods to Evaluate Mental Health Apps Based on User Reviews. IEEE Access 8, 111141–111158 (2020).

    Article 

    Google Scholar 

  • Eagle, T., Mehrotra, A., Sharma, A., Zuniga, A. & Whittaker, S. “Money Doesn’t Buy You Happiness”: Negative Consequences of Using the Freemium Model for Mental Health Apps. Proc. ACM Hum. Comput. Interact 6, 1–38 (2022).

    Article 

    Google Scholar 

  • Barrett, D. & Heale, R. What are Delphi studies? Evid. Based Nurs. 23, 68–69 (2020).

    Article 
    PubMed 

    Google Scholar 

  • NHS Institute for Innovation and Improvement. The ebd approach: experience based design Using patient and staff experience to design better healthcare services. (2009). Accessed 05 October 2023.

  • Lipschitz, J. et al. Adoption of Mobile Apps for Depression and Anxiety: Cross-Sectional Survey Study on Patient Interest and Barriers to Engagement. JMIR Mental Health 6, e11334 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simblett, S. et al. Barriers to and Facilitators of Engagement With mHealth Technology for Remote Measurement and Management of Depression: Qualitative Analysis. JMIR mHealth uHealth 7, e11325 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carpenter, C. J. A Meta-Analysis of the Effectiveness of Health Belief Model Variables in Predicting Behavior. Health Commun. 25, 661–669 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Robillard, J. M. et al. Availability, readability, and content of privacy policies and terms of agreements of mental health apps. Internet Interventions 17, 100243 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, L., Halter, V., Karliychuk, T. & Grundy, Q. How private is your mental health app data? An empirical study of mental health app privacy policies and practices. Int. J. Law Psychiatry 64, 198–204 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Alfawzan, N., Christen, M., Spitale, G. & Biller-Andorno, N. Privacy, Data Sharing, and Data Security Policies of Women’s mHealth Apps: Scoping Review and Content Analysis. JMIR mHealth uHealth 10, e33735 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jilka, S. et al. Terms and conditions apply: Critical issues for readability and jargon in mental health depression apps. Internet Interventions 25, 100433 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, R. L. & Swindle, R. W. Premenstrual Symptom Severity: Impact on Social Functioning and Treatment-Seeking Behaviors. J. Womens Health Gender Based Med. 9, 757–768 (2000).

    Article 
    CAS 

    Google Scholar 

  • Cross, S. P. et al. Factors associated with treatment uptake, completion, and subsequent symptom improvement in a national digital mental health service. Internet Interventions 27, 100506 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osborn, E., Wittkowski, A., Brooks, J., Briggs, P. E. & O’Brien, P. M. S. Women’s experiences of receiving a diagnosis of premenstrual dysphoric disorder: a qualitative investigation. BMC Women Health 20, 242 (2020).

    Article 

    Google Scholar 

  • Friis-Healy, E. A., Nagy, G. A. & Kollins, S. H. It Is Time to REACT: Opportunities for Digital Mental Health Apps to Reduce Mental Health Disparities in Racially and Ethnically Minoritized Groups. JMIR Mental Health 8, e25456 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavafian, S. S., Hasani, L., Aghamolaei, T., Zare, S. & Gregory, D. Prediction of breast self-examination in a sample of Iranian women: an application of the Health Belief Model. BMC Women Health 9, 37 (2009).

    Article 

    Google Scholar 

  • Adams, C., Gringart, E. & Strobel, N. Explaining adults’ mental health help-seeking through the lens of the theory of planned behavior: a scoping review. Syst. Rev. 11, 160 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darabi, F. & Yaseri, M. Intervention to Improve Menstrual Health Among Adolescent Girls Based on the Theory of Planned Behavior in Iran: A Cluster-randomized Controlled Trial. J. Prev. Med. Public Health 55, 595–603 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torous, J., Lipschitz, J., Ng, M. & Firth, J. Dropout rates in clinical trials of smartphone apps for depressive symptoms: A systematic review and meta-analysis. J. Affect. Disord. 263, 413–419 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Luo, A. et al. The Effect of Online Health Information Seeking on Physician-Patient Relationships: Systematic Review. J. Med. Internet Res. 24, e23354 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fryers, T., Melzer, D. & Jenkins, R. Social inequalities and the common mental disorders. Soc. Psychiatry Psychiatric Epidemiol. 38, 229–237 (2003).

    Article 

    Google Scholar 

  • Sareen, J., Afifi, T. O., McMillan, K. A. & Asmundson, G. J. G. Relationship Between Household Income and Mental Disorders: Findings From a Population-Based Longitudinal Study. Arch. Gen. Psychiatry 68, 419–427 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Steiner, M., Macdougall, M. & Brown, E. The premenstrual symptoms screening tool (PSST) for clinicians. Arch Womens Ment Health 6, 203–209 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th ed., text rev. (American Psychiatric Publishing, Inc, 2022).

  • Spadaro, B., Martin-Key, N. A., Funnell, E., Benáček, J. & Bahn, S. Opportunities for the Implementation of a Digital Mental Health Assessment Tool in the United Kingdom: Exploratory Survey Study. JMIR Formative Res. 7, e43271 (2023).

    Article 

    Google Scholar 

  • Funnell, E. L., Spadaro, B., Martin-Key, N. A., Benacek, J. & Bahn, S. Perceived acceptability of apps for mental health assessment and triage with recommendations for future design: a UK semi-structured interview study. JMIR formative research 8, e48881 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kline R. B. Principles and Practice of Structural Equation Modeling. 4th ed. (Guildford Press, 2015).

  • Thompson B. Exploratory and confirmatory factor analysis: Understanding concepts and applications (American Psychological Association, 2004).

  • Barrett, P. Structural equation modelling: Adjudging model fit. Personal. Ind. Differ. 42, 815–824 (2007).

    Article 

    Google Scholar 

  • Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods Psychol. Res. 8, 23–74 (2003).

    Google Scholar 

  • Vandenberg, R. J. Introduction: Statistical and Methodological Myths and Urban Legends: Where, Pray Tell, Did They Get This Idea? Org. Res. Methods 9, 194–201 (2006).

    Article 

    Google Scholar 

  • Joreskog, K. & Sorbom D. Structural equation modelling: Guidelines for determining model fit (University Press of America, 1993).

  • Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscipl. J. 6, 1–55 (1999).

    Article 

    Google Scholar 

  • Steiger, J. H. Understanding the limitations of global fit assessment in structural equation modeling. Personal. Ind. Differ. 42, 893–898 (2007).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.