Lecrubier, Y. Widespread underrecognition and undertreatment of anxiety and mood disorders: results from 3 European studies. J. Clin. Psychiatry 68, 36–41 (2007).
Google Scholar
Bucci, S., Schwannauer, M. & Berry, N. The digital revolution and its impact on mental health care. Psychol. Psychother. Theory Res. Pract. 92, 277–297 (2019).
Google Scholar
Naslund, J. A., Bondre, A., Torous, J. & Aschbrenner, K. A. Social media and mental health: benefits, risks, and opportunities for research and practice. J. Technol. Behav. Sci. 5, 245–257 (2020).
Google Scholar
Reddit. Reddit by the numbers. (2024).
Boettcher, N. Studies of depression and anxiety using Reddit as a data source: scoping review. JMIR Ment. Health 8, 29487 (2021).
Google Scholar
Proferes, N., Jones, N., Gilbert, S., Fiesler, C. & Zimmer, M. Studying Reddit: a systematic overview of disciplines, approaches, methods, and ethics. Soc. Media Soc. 7, 20563051211019004 (2021).
Insel, T. R. Digital phenotyping: technology for a new science of behavior. J. Am. Med. Assoc. 318, 1215–1216 (2017).
Google Scholar
Lejeune, A., Robaglia, B. M., Walter, M., Berrouiguet, S. & Lemey, C. Use of social media data to diagnose and monitor psychotic disorders: systematic review. J. Med. Internet Res. 24, 36986 (2022).
Google Scholar
Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H. & Eichstaedt, J. C. Detecting depression and mental illness on social media: an integrative review. Curr. Opin. Behav. Sci. 18, 43–49 (2017).
Google Scholar
Monti, C., Aiello, L. M., Francisci Morales, G. & Bonchi, F. The language of opinion change on social media under the lens of communicative action. Sci. Rep. 12, 17920 (2022).
Google Scholar
Zhang, T., Schoene, A. M., Ji, S. & Ananiadou, S. Natural language processing applied to mental illness detection: a narrative review. NPJ Digit. Med. 5, 1–13 (2022).
Google Scholar
Graves, R. L. et al. Thematic analysis of Reddit content about buprenorphine-naloxone using manual annotation and natural language processing techniques. J. Addict. Med. 16, 454–460 (2022).
Google Scholar
Liu, T. et al. Detecting symptoms of depression on Reddit. in Proceedings of the 15th ACM Web Science Conference 2023 174–183 (2023).
Shen, J. H. & Rudzicz, F. Detecting anxiety through Reddit. in Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology—From Linguistic Signal to Clinical Reality 58–65 (2017).
Alambo, A. et al. Question answering for suicide risk assessment using Reddit. in 2019 IEEE 13th International Conference on Semantic Computing (ICSC 468–473 (IEEE, 2019).
Sekulić, I. & Gjurković, M. & Šnajder, J. Not Just Depressed: Bipolar Disorder Prediction on Reddit (2018).
Bae, Y. J., Shim, M. & Lee, W. H. Schizophrenia detection using machine learning approach from social media content. Sensors 21, 5924 (2021).
Google Scholar
Birnbaum, M. et al. O9. 2. Identifying psychotic symptoms and predicting relapse through social media. Schizophr. Bull. 44, 100 (2018).
Google Scholar
Birnbaum, M. L., Ernala, S. K., Rizvi, A. F., Choudhury, M. & Kane, J. M. A collaborative approach to identifying social media markers of schizophrenia by employing machine learning and clinical appraisals. J. Med. Internet Res. 19, 7956 (2017).
Google Scholar
Dinev, M., Belousov, M., Morris, R., Berry, N. & Nenadic, G. Using Twitter to mine sleep related information from people who declare a diagnosis of a psychotic disorder. Int. J. Popul. Data Sci. 1, 349 (2017).
Ernala, S. K., Rizvi, A. F., Birnbaum, M. L., Kane, J. M. & Choudhury, M. Linguistic markers indicating therapeutic outcomes of social media disclosures of schizophrenia. Proc. ACM Hum. Comput. Interact. 1, 1–27 (2017).
Google Scholar
Joseph, S. M., Citraro, S., Morini, V., Rossetti, G. & Stella, M. Cognitive network neighborhoods quantify feelings expressed in suicide notes and Reddit mental health communities. Phys. Stat. Mech. Appl. 610, 128336 (2023).
Google Scholar
Kim, J., Lee, J., Park, E. & Han, J. A deep learning model for detecting mental illness from user content on social media. Sci. Rep. 10, 11846 (2020).
Google Scholar
Lyons, M., Bootes, E., Brewer, G., Stratton, K. & Centifanti, L. COVID-19 spreads round the planet, and so do paranoid thoughts. A qualitative investigation into personal experiences of psychosis during the COVID-19 pandemic. Curr. Psychol. 42, 1–10 (2021).
McManus, K., Mallory, K., Goldfeder, R. L. & Tatum, J. D. Mining Twitter data to improve detection of schizophrenia. AMIA Jt Summits Transl. Sci. Proc. 2015, 122–126 (2015).
Mitchell, M., Hollingshead, K. & Coppersmith, G. Quantifying the language of schizophrenia in social media. in Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality 11–20 (2015).
Zomick, J., Levitan, S. I. & Serper, M. Linguistic analysis of schizophrenia in Reddit posts. in Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology 74–83 (2019).
DataReportal, M. & Social, W. A. Number of internet and social media users worldwide as of January 2024 (in billions) [Graph. in Statista (2024).
Hitczenko, K., Mittal, V. A. & Goldrick, M. Understanding language abnormalities and associated clinical markers in psychosis: the promise of computational methods. Schizophr. Bull. 47, 344–362 (2021).
Google Scholar
van Schuppen, S. L., Krieken, K., Claassen, S. A. & Sanders, J. Perspective-taking and intersubjectivity in oral narratives of people with a schizophrenia diagnosis: a cognitive linguistic viewpoint analysis. Cogn. Linguist. 34, 197–229 (2023).
Google Scholar
Bilgrami, Z. R. et al. Construct validity for computational linguistic metrics in individuals at clinical risk for psychosis: associations with clinical ratings. Schizophr. Res. 245, 90–96 (2022).
Google Scholar
Iter, D., Yoon, J. & Jurafsky, D. Automatic detection of incoherent speech for diagnosing schizophrenia. in Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic 136–146 (2018).
Just, S. et al. Coherence models in schizophrenia. in Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology 126–136 (2019).
Andreasen, N. C. & Grove, W. M. Thought, language, and communication in schizophrenia: diagnosis and prognosis. Schizophr. Bull. 12, 348–359 (1986).
Google Scholar
Bleuler, E. Dementia Praecox or the Group of Schizophrenias. International Universities Press (1950).
Bar K. et al. Semantic Characteristics of Schizophrenic Speech. arXiv preprint arXiv:1904.07953 (2019).
Bedi, G. et al. Automated analysis of free speech predicts psychosis onset in high-risk youths. Npj Schizophr. 1, 1–7 (2015).
Google Scholar
Corcoran, C. M. et al. Prediction of psychosis across protocols and risk cohorts using automated language analysis. World Psychiatry 17, 67–75 (2018).
Google Scholar
Corona-Hernández, H., Boer, J. N., Brederoo, S. G., Voppel, A. E. & Sommer, I. E. C. Assessing coherence through linguistic connectives: analysis of speech in patients with schizophrenia-spectrum disorders. Schizophr. Res. 259, 48–58 (2023).
Google Scholar
Elvevåg, B., Foltz, P. W., Weinberger, D. R. & Goldberg, T. E. Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia. Schizophr. Res. 93, 304–316 (2007).
Google Scholar
Morgan, S. E. et al. Natural Language Processing markers in first episode psychosis and people at clinical high-risk. Transl. Psychiatry 11, 630 (2021).
Google Scholar
Parola, A. et al. Speech disturbances in schizophrenia: assessing cross-linguistic generalizability of NLP automated measures of coherence. Schizophr. Res. 259, 59–70 (2023).
Google Scholar
Ryazanskaya, G. & Khudyakova, M. Automated analysis of discourse coherence in schizophrenia: approximation of manual measures. LREC 2020 Lang. Resour. Eval. Conf. 98, 101 (2020).
Sarzynska-Wawer, J. et al. Detecting formal thought disorder by deep contextualized word representations. Psychiatry Res. 304, 114135 (2021).
Google Scholar
Voppel, A. E., Boer, J. N., Brederoo, S. G., Schnack, H. G. & Sommer, I. E. C. Quantified language connectedness in schizophrenia-spectrum disorders. Psychiatry Res. 304, 114130 (2021).
Google Scholar
Haas, S. S. et al. Linking language features to clinical symptoms and multimodal imaging in individuals at clinical high risk for psychosis. Eur. Psychiatry 63, 72 (2020).
Google Scholar
Roche, E., Creed, L., MacMahon, D., Brennan, D. & Clarke, M. The epidemiology and associated phenomenology of formal thought disorder: a systematic review. Schizophr. Bull. 41, 951–962 (2015).
Google Scholar
Mutlu, E., Gürkan, Ş., Göka, E. & Yağcioğlu, A. E. A. Comparison of formal thought disorder in the acute episode of schizophrenia and manic episode of bipolar affective disorder. Turk. J. Psychiatry 33, 223–232 (2022).
van Bergen, A. H. et al. The characteristics of psychotic features in bipolar disorder. Psychol. Med. 49, 2036–2048 (2019).
Google Scholar
Yalincetin, B. et al. Formal thought disorder in schizophrenia and bipolar disorder: a systematic review and meta-analysis. Schizophr. Res. 185, 2–8 (2017).
Google Scholar
Dorahy, M. J. et al. A comparison between auditory hallucinations, interpretation of voices, and formal thought disorder in dissociative identity disorder and schizophrenia spectrum disorders. J. Clin. Psychol. 79, 2009–2022 (2023).
Foote, B. & Park, J. Dissociative identity disorder and schizophrenia: differential diagnosis and theoretical issues. Curr. Psychiatry Rep. 10, 217–222 (2008).
Google Scholar
Lindley, S. E., Carlson, E. & Sheikh, J. Psychotic symptoms in posttraumatic stress disorder. CNS Spectr. 5, 52–57 (2000).
Google Scholar
Chisholm, K., Lin, A., Abu-Akel, A. & Wood, S. J. The association between autism and schizophrenia spectrum disorders: a review of eight alternate models of co-occurrence. Neurosci. Biobehav. Rev. 55, 173–183 (2015).
Google Scholar
Eisen, J. L. & Rasmussen, S. A. Obsessive compulsive disorder with psychotic features. J. Clin. Psychiatry 54, 373–379 (1993).
Google Scholar
Palermo, S., Marazziti, D., Baroni, S., Barberi, F. M. & Mucci, F. The relationships between obsessive-compulsive disorder and psychosis: an unresolved issue. Clin. Neuropsychiatry 17, 149 (2020).
Google Scholar
Vitiello, B. et al. Psychotic symptoms in attention-deficit/hyperactivity disorder: an analysis of the MTA database. J. Am. Acad. Child Adolesc. Psychiatry 56, 336–343 (2017).
Google Scholar
Wigman, J. T. et al. Evidence that psychotic symptoms are prevalent in disorders of anxiety and depression, impacting on illness onset, risk, and severity—implications for diagnosis and ultra–high risk research. Schizophr. Bull. 38, 247–257 (2012).
Google Scholar
Kircher, T., Bröhl, H., Meier, F. & Engelen, J. Formal thought disorders: from phenomenology to neurobiology. Lancet Psychiatry 5, 515–526 (2018).
Google Scholar
Lott, P. R., Guggenbühl, S., Schneeberger, A., Pulver, A. E. & Stassen, H. H. Linguistic analysis of the speech output of schizophrenic, bipolar, and depressive patients. Psychopathology 35, 220–227 (2002).
Google Scholar
Stein, F. et al. State of illness-dependent associations of neuro-cognition and psychopathological syndromes in a large transdiagnostic cohort. J. Affect. Disord. 324, 589–599 (2023).
Google Scholar
Baumgartner, J., Zannettou, S., Keegan, B., Squire, M. & Blackburn, J. The pushshift Reddit dataset. Proc. Int. AAAI Conf. Web Soc. Media 14, 830–839 (2020).
Google Scholar
Robertson, C., Carney, J. & Trudell, S. Language about the future on social media as a novel marker of anxiety and depression: a big-data and experimental analysis. Curr. Res. Behav. Sci. 4, 100104 (2023).
Google Scholar
Cer, D. et al. Universal sentence encoder for English. in Proceedings of the 2018 Conference On Empirical Methods In Natural Language Processing: System Demonstrations 169–174 (2018).
Vanaken, L. & Hermans, D. Be coherent and become heard: the multidimensional impact of narrative coherence on listeners’ social responses. Mem. Cogn. 49, 276–292 (2021).
Google Scholar
Vanaken, L., Bijttebier, P., Fivush, R. & Hermans, D. Narrative coherence predicts emotional well-being during the COVID-19 pandemic: a two-year longitudinal study. Cogn. Emot. 36, 70–81 (2022).
Google Scholar
Vanaken, L., Bijttebier, P. & Hermans, D. I like you better when you are coherent. Narrating autobiographical memories in a coherent manner has a positive impact on listeners’ social evaluations. PLoS One 15, 0232214 (2020).
Google Scholar
Bluck, S. Autobiographical memory: Exploring its functions in everyday life. Memory 11, 113–123 (2003).
Google Scholar
Colizzi, M., Lasalvia, A. & Ruggeri, M. Prevention and early intervention in youth mental health: is it time for a multidisciplinary and trans-diagnostic model for care? Int. J. Ment. Health Syst. 14, 1–14 (2020).
Google Scholar
Le, L. K. D. et al. Cost-effectiveness evidence of mental health prevention and promotion interventions: a systematic review of economic evaluations. PLoS Med. 18, 1003606 (2021).
Google Scholar
Ciampelli, S., Voppel, A. E., Boer, J. N., Koops, S. & Sommer, I. E. C. Combining automatic speech recognition with semantic natural language processing in schizophrenia. Psychiatry Res. 325, 115252 (2023).
Google Scholar
link
