January 13, 2026
Empowering service users, the public, and providers to determine the future of artificial intelligence in behavioral healthcare
  • OECD Health Policy Studies. A New Benchmark for Mental Health Systems: Tackling the Social and Economic Costs of Mental Ill-Health (OECD, 2021).

  • Glied, S. & Aguilar, K. The Behavioral Health Workforce Shortage: Can We Make Better Use of the Providers We Have? (Brookings Institution, 2023).

  • Copeland, B. J. Artificial intelligence. Encyclopædia Britannica (accessed 17 March 2025); https://www.britannica.com/technology/artificial-intelligence

  • Maslej, N. et al. The AI Index 2025 Annual Report (AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, 2025).

  • Noble, D. Forces of Production: A Social History of Industrial Automation (Routledge, 2017).

  • Resnikoff, J. Contesting the idea of progress: Labor’s AI challenge. New Labor Forum 33, 6–14 (2024).

    Article 

    Google Scholar 

  • National Research Council. Funding a Revolution: Government Support for Computing Research (National Academies Press, 1999).

  • Pece, C. V. & Anderson, G. W. Analysis of Federal Funding for Research and Development in 2022: Basic Research (National Center for Science and Engineering Statistics, 2024).

  • Bogmans, C. et al. Power Hungry: How AI Will Drive Energy Demand (International Monetary Fund, 2025).

  • Ngata, W. M. et al. The Cloud next door: investigating the environmental and socioeconomic strain of datacenters on local communities. In Proc. ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies 769–774 (ACM, 2025).

  • LeRoy, G. & Tarczynska, K. Cloudy With a Loss of Spending Control: How Data Centers Are Endangering State Budgets (Good Jobs First, 2025).

  • Hao, K. Empire of AI: Dreams and Nightmares in Sam Altman’s OpenAI (Random House, 2025).

  • Wang, D., Prabhat, S. & Sambasivan, N. Whose AI Dream? In search of the aspiration in data annotation. In Proc. CHI Conference on Human Factors in Computing Systems 1–16 (ACM, 2022).

  • Last, B. S. & Crable, E. L. Policy recommendations for coordinated and sustainable growth of the behavioral health workforce. Milbank Q 102, 526–543 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dryzek, J. S. et al. The crisis of democracy and the science of deliberation. Science 363, 1144–1146 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Abelson, J. et al. Deliberations about deliberative methods: issues in the design and evaluation of public participation processes. Soc. Sci. Med. 57, 239–251 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Skorburg, J. A., O’Doherty, K. & Friesen, P. Persons or data points? Ethics, artificial intelligence and the participatory turn in mental health research. Am. Psychol. 79, 137–149 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Tyson, A., Pasquini, G., Spencer, A. & Funk, C. 60% of Americans Would Be Uncomfortable With Provider Relying on AI in Their Own Health Care (Pew Research Center, 2023).

  • Kreacic, A. et al. How Generative AI is Transforming Business and Society: The Good, the Bad and Everything in Between (Oliver Wyman Forum, 2024).

  • Rubin, M. Comparing the value of perceived human versus AI-generated empathy. Nat. Hum. Behav. 9, 2345–2359 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Riedl, R., Hogeterp, S. A. & Reuter, M. Do patients prefer a human doctor, artificial intelligence, or a blend, and is this preference dependent on medical discipline? Empirical evidence and implications for medical practice. Front. Psychol. 15, 1422177 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benda, N. et al. Patient perspectives on AI for mental health care: cross-sectional survey study. JMIR Ment. Health 11, e58462 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rehman, F. & Sajjad, S. Human touch or AI support: the moderating role of engagement in counseling satisfaction. Hum. Nat. J. Soc. Sci. 6, 229–241 (2025).

    Google Scholar 

  • Torous, J., Lipschitz, J., Ng, M. & Firth, J. Dropout rates in clinical trials of smartphone apps for depressive symptoms: a systematic review and meta-analysis. J. Affect. Disord. 263, 413–419 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Saad, A., Bruno, D., Camara, B., D’Agostino, J. & Bolea-Alamanac, B. Self-directed technology-based therapeutic methods for adult patients receiving mental health services: systematic review. JMIR Ment. Health 8, e27404 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lipschitz, J. M. et al. Digital mental health interventions for depression: scoping review of user engagement. J. Med. Internet Res. 24, e39204 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baumel, A., Muench, F., Edan, S. & Kane, J. M. Objective user engagement with mental health apps: systematic search and panel-based usage analysis. J. Med. Internet Res. 21, e14567 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Psihogios, A. M. et al. ‘How to Save a Life’: a premortem for pediatric digital health. Clin. Pract. Pediatr. Psychol. 12, 347–357 (2024).

    Google Scholar 

  • Del Re, A. C., Flückiger, C., Horvath, A. O. & Wampold, B. E. Examining therapist effects in the alliance–outcome relationship: a multilevel meta-analysis. J. Consult. Clin. Psychol. 89, 371–378 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Roest, J. J., Welmers-Van De Poll, M. J., Van Der Helm, G. H. P., Stams, G. J. J. M. & Hoeve, M. A meta-analysis on differences and associations between alliance ratings in child and adolescent psychotherapy. J. Clin. Child Adolesc. Psychol. 52, 55–73 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Dreer, B. The significance of mentor–mentee relationship quality for student teachers’ well-being and flourishing during practical field experiences: a longitudinal analysis. Int. J. Mentor Coach Educ. 10, 101–117 (2021).

    Article 

    Google Scholar 

  • Middleton, K. R., Anton, S. D. & Perri, M. G. Long-term adherence to health behavior change. Am. J. Lifestyle Med. 7, 395–404 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Wang, J., Mann, F., Lloyd-Evans, B., Ma, R. & Johnson, S. Associations between loneliness and perceived social support and outcomes of mental health problems: a systematic review. BMC Psychiatry 18, 156 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gershon, R., Cryder, C. & Milkman, K. L. Friends with health benefits: a field experiment. Manag. Sci. 71, 584–594 (2025).

    Google Scholar 

  • Wickramaratne, P. J. et al. Social connectedness as a determinant of mental health: a scoping review. PLoS ONE 17, e0275004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khazanov, G. K., Poupard, M. & Last, B. S. Public responses to the first randomized controlled trial of a generative artificial intelligence mental health chatbot. Preprint at PsyArXiv (2025).

  • Stade, E., Tait, Z., Campione, S. & Stirman, S. Current real-world use of large language models for mental health. Preprint at OSF (2025).

  • Cuijpers, P. et al. The effects of psychotherapies for depression on response, remission, reliable change and deterioration: a meta-analysis. Acta Psychiatr. Scand. 144, 288–299 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grose, J. Human interaction is now a luxury good. The New York Times (4 December 2024).

  • Bor, J., Cohen, G. H. & Galea, S. Population health in an era of rising income inequality: USA, 1980–2015. Lancet 389, 1475–1490 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Dickman, S. L., Himmelstein, D. U. & Woolhandler, S. Inequality and the health-care system in the USA. Lancet 389, 1431–1441 (2017).

    Article 
    PubMed 

    Google Scholar 

  • American Psychological Association. APA Health Advisory on the Use of Generative AI Chatbots and Wellness Applications for Mental Health (APA, 2025).

  • National Nurses United. A.I.’s impact on nursing and health care (2025).

  • Nathan, K. The ethical and legal implications of Nvidia’s ‘$9 nurses’. Am. J. Biomed. Sci. Res. 22, 002962 (2024).

    Article 

    Google Scholar 

  • Cutter, C. & Zimmerman, H. CEOs start saying the quiet part out loud: AI will wipe out jobs. The Wall Street Journal (2 April 2025).

  • Perret, S. et al. Standardising the role of a digital navigator in behavioural health: a systematic review. Lancet Digit. Health 5, e925–e932 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Xiang, C. Eating disorder helpline disables chatbot for ‘harmful’ responses after firing human staff. Vice (2023).

  • Xiang, C. Eating disorder helpline fires staff, transitions to chatbot after unionization. Vice (2023).

  • Wells, K. An eating disorders chatbot offered dieting advice, raising fears about AI in health. npr (2023).

  • Benanav, A. & Flores, L. Special issue on workers and obsolescence. Int. Labor Work. Cl. Hist. 102, 1–6 (2022).

    Article 

    Google Scholar 

  • Hong, P. & Emanuel, E. J. Leveraging artificial intelligence to bridge the mental health workforce gap and transform care. Milbank Q (2025).

  • Dunn, A., Gottlieb, J. D., Shapiro, A. H., Sonnenstuhl, D. J. & Tebaldi, P. A denial a day keeps the doctor away. Q. J. Econ. 139, 187–233 (2024).

    Article 

    Google Scholar 

  • Waldman, A., Miller, M., Eldeib, D. & Blau, M. Why I left the network. ProPublica (2024).

  • Zhu, J. M. & Eisenberg, M. Administrative frictions and the mental health workforce. JAMA Health Forum 5, e240207 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lo, J., Long, M., Wallace, R., Salaga, M. & Pestaina, K. Claims Denials and Appeals in ACA Marketplace Plans in 2023 (KFF, 2025).

  • Resneck, J. S. Jr. Refocusing medication prior authorization on its intended purpose. JAMA 323, 703–704 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Biniek, J. F., Sroczynski, N., Freed, M. & Neuman, T. Medicare Advantage Insurers Made Nearly 50 Million Prior Authorization Determinations in 2023 (KFF, 2023).

  • Gupta, R., Fein, J., Newhouse, J. P. & Schwartz, A. L. Comparison of prior authorization across insurers: cross sectional evidence from Medicare Advantage. Brit. Med. J. 384, e077797 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morra, D. et al. US physician practices versus Canadians: spending nearly four times as much money interacting with payers. Health Aff. 30, 1443–1450 (2011).

    Article 

    Google Scholar 

  • Miller, T. C., Rucker, P. & Armstrong, D. ‘Not medically necessary’: inside the company helping America’s biggest health insurers deny coverage for care. ProPublica (2024).

  • Hillestad, R. et al. Can electronic medical record systems transform health care? Potential health benefits, savings and costs. Health Aff. 24, 1103–1117 (2005).

    Article 

    Google Scholar 

  • Baumann, L. A., Baker, J. & Elshaug, A. G. The impact of electronic health record systems on clinical documentation times: a systematic review. Health Policy 122, 827–836 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Yan, Q., Jiang, Z., Harbin, Z., Tolbert, P. H. & Davies, M. G. Exploring the relationship between electronic health records and provider burnout: a systematic review. J. Am. Med. Inform. Assoc. 28, 1009–1021 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Starren, J. B. et al. A retrospective look at the predictions and recommendations from the 2009 AMIA policy meeting: did we see EHR-related clinician burnout coming? J. Am. Med. Inform. Assoc. 28, 948–954 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connor, K. APA unveils prior authorization model legislation. Psychiatr. News (2022).

  • Stade, E. C. et al. Large language models could change the future of behavioral healthcare: a proposal for responsible development and evaluation. npj Ment. Health Res. 3, 12 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Creed, T. A. et al. Enhancing the quality of cognitive behavioral therapy in community mental health through artificial intelligence generated fidelity feedback (Project AFFECT): a study protocol. BMC Health Serv. Res. 22, 1177 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Last, B. S., Mirhashem, R. & Yang, Y. From plan to practice: a qualitative study of public mental health therapists’ session-planning practices. Psychol. Serv. 21, 893–907 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reis, M., Reis, F. & Kunde, W. Influence of believed AI involvement on the perception of digital medical advice. Nat. Med. 30, 3098–3100 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Last, B. S., Adams, D. R. & Mirhashem, R. Therapists’ work conditions as patients’ treatment conditions: a qualitative study of unionized public mental health therapists. Am. J. Orthopsychiatry 95, 599–612 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodyear, R. K. & Rousmaniere, T. in The Cycle of Excellence 1st edn (eds Rousmaniere, T. et al.) 67–95 (Wiley, 2017).

  • Goldstack, J. & Overgaard, S. Billions of dollars have been invested in healthcare AI. But are we spending in the right places? World Economic Forum (2024).

  • Lynn, B., von Thun, M. & Montoya, K. AI in the Public Interest: Confronting the Monopoly Threat (Open Markets Institute, 2023).

  • Abdalla, M. & Abdalla, M. The Grey Hoodie Project: Big Tobacco, Big Tech and the threat on academic integrity. In Proc. 2021 AAAI/ACM Conference on AI, Ethics and Society 287–297 (ACM, 2021).

  • Larson, J., Denford, J. S., Dawson, G. S. & Desouza, K. C. The Evolution of Artificial Intelligence (AI) Spending by the U.S. Government (Brookings Institution, 2024).

  • West, D. M. R&D for the Public Good: Ways to Strengthen Societal Innovation in the United States (Brookings Institution, 2022).

  • Wei, K., Ezell, C., Gabrieli, N. & Deshpande, C. How do AI companies ‘fine-tune’ policy? Examining regulatory capture in AI governance. In Proc. AAAI/ACM Conference on AI, Ethics and Society Vol. 7, 1539–1555 (ACM, 2024).

  • Chater, N. & Loewenstein, G. The i-frame and the s-frame: how focusing on individual-level solutions has led behavioral public policy astray. Behav. Brain Sci. 46, e147 (2023).

    Article 

    Google Scholar 

  • Ghosh, A., Sotomayor, I., Chetty, M. & Schleider, J. Instances and implications of deceptive design patterns in mental health apps. Preprint at PsyArXiv (2025).

  • Casper, S. et al. Black-box access is insufficient for rigorous AI audits. In Proc. 2024 ACM Conference on Fairness, Accountability and Transparency 2254–2272 (ACM, 2024).

  • Barry, E. Human therapists prepare for battle against A.I. pretenders. The New York Times (24 February 2025).

  • Tiku, N. & Malhi, S. What is ‘AI psychosis’ and how can ChatGPT affect your mental health? Washington Post (19 August 2025).

  • Snodin, B., Owen, D. & Emberson, L. The Combined Revenues of Leading AI Companies Grew by Over 9× in 2023–2024 (Epoch AI, 2025).

  • Moore, J. et al. Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers. In Proc. 2025 ACM Conference on Fairness, Accountability and Transparency 599–627 (ACM, 2025).

  • Landi, H. Epic touts new AI applications to streamline charting and bring research insights to the point of care. Fierce Healthcare (2024).

  • Cornish, M. How Eleos supercharges clinical supervision: a study. Eleos (2024).

  • Hine, E. Artificial intelligence laws in the US states are feeling the weight of corporate lobbying. Nature 633, S15 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Public AI Network. Public AI: infrastructure for the common good. Zenodo (2024).

  • Hudson, J. L., Moon, Z., Hughes, L. D. & Moss-Morris, R. in The Handbook of Behavior Change (eds Hagger, M. S. et al.) 349–360 (Cambridge Univ. Press, 2020).

  • Hsu, Y. C., Verma, H., Mauri, A., Nourbakhsh, I. & Bozzon, A. Empowering local communiÿties using artificial intelligence. Patterns 3, 100449 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parthasarathy, A., Phalnikar, A., Krishnan, G. S., Jauhar, A. & Ravindran, B. Participatory approaches in AI development and governance: case studies. Preprint at (2024).

  • Seger, E., Ovadya, A., Siddarth, D., Garfinkel, B. & Dafoe, A. Democratising AI: multiple meanings, goals and methods. In Proc. 2023 AAAI/ACM Conference on AI, Ethics and Society 715–722 (ACM, 2023).

  • Cech, T. R. & Leonard, J. S. Conflicts of interest—moving beyond disclosure. Science 291, 989 (2001).

    Article 
    PubMed 

    Google Scholar 

  • National Nurses United. National Nurses United survey Finds A.I. technology degrades and undermines patient safety (2024).

  • International Trade Union Confederation. AI Action Summit: Trade union rights are key to technological transformation (2025).

  • Kresge, L. Negotiating Tech: An Inventory of U.S. Union Contract Provisions for the Digital Age (U.C. Berkeley Labor Center, 2025); https://laborcenter.berkeley.edu/negotiating-tech/

  • Budzyń, K. et al. Endoscopist deskilling risk after exposure to artificial intelligence in colonoscopy: a multicentre, observational study. Lancet Gastroenterol. Hepatol. 10, 896–903 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Becker, J. Landmark law prohibits health insurance companies from using AI to deny healthcare coverage. Josh Becker (2024).

  • NCSL. Artificial intelligence 2025 legislation. NCSL Foundation for State Legislatures (2025).

  • Wang, F. et al. A systematic review and meta-analysis of 90 cohort studies of social isolation, loneliness and mortality. Nat. Hum. Behav. 7, 1307–1319 (2023).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *